Forest ecosystems in changing climate

Bjarni D. Sigurdsson

Prof. of forest science, Agric. Univ. Iceland bjarni@lbhi.is

Talk given at the Nordic Council of Ministers' conference: "*Climate From the Nordic-Baltic Perspective. Science, Policy, Economy 2013*". Tallinn, Estonia, 23-24 October, 2013

What is ,,climate change"? NOT only increase in MAT => CO₂, T, P, N-dep., seasonality, disturbance, etc.!

Created by Ola Langvall 2006

What are the strongest CC drivers in the boreal forest dynamics?

– MAT?

- Max air temperature?
- Winter frosts?
- Growing season length and timing?
- Annual rainfall?
 - Summer water balance?
- Nutrient cycle feedbacks
 - Soil temperature and nutrient turnover?
 - Soil humidity and nutrient turnover?
- Other CC-Biotic interactions?

Recent review for boral forests

Tansley review

The likely impact of elevated [CO₂], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

Author for correspondence: Ritita Hyvönen-Olsson Tel: +46 18 673419 Fax: +46 18 673430 Email: Ritita Hyvonen@eom.slu.se

Received: 19 June 2006 Accepted: 8 November 2006 Riitta Hyvönen¹, Göran I. Ågren¹, Sune Linder², Tryggve Persson¹, M. Francesca Cotrufo³, Alf Ekblad⁴, Michael Freeman¹, Achim Grelle¹, Ivan A. Janssens⁵, Paul G. Jarvis⁶, Seppo Kellomäki⁷, Anders Lindroth⁸, Denis Loustau⁹, Tomas Lundmark¹⁰, Richard J. Norby¹¹, Ram Oren¹², Kim Pilegaard¹³, Michael G. Ryan¹⁴, Bjarni D. Sigurdsson¹⁵, Monika Strömgren^{8,16}, Marcel van Oijen¹⁷ and Göran Wallin¹⁸

New Phytologist (2007) 173: 463–480

Main message: you can <u>not</u> predict changes in future forest growth with changes in single environmental factor!

Table 1 Important cause-effect chains for carbon cycling

No.	Rate*	Perturbation	Cause–effect chain	Strength†	Knowledge‡
1	Fast	[CO₂]↑	NPP $\uparrow \Rightarrow$ N demand $\uparrow \Rightarrow$ Soil N availability $\downarrow \Rightarrow$ NPP \downarrow	Strong	High
2	Fast	N↑¯	NPP 1	Strong	High
3	Fast	т↑	NPP $\uparrow \Rightarrow$ N demand $\uparrow \Rightarrow$ Soil N availability $\downarrow \Rightarrow$ NPP \downarrow	Strong	High
4	Fast	ТÎ	Soil respiration $\uparrow \Rightarrow$ Soil carbon $\downarrow \Rightarrow$ Soil respiration \downarrow	Strong	High
5	Fast	[CO₂]↑	Allocation to roots and mycorrhiza $\uparrow \Rightarrow$ Soil respiration \uparrow	Medium	High
6	Fast	T↑	Turnover of fine roots $\downarrow \Rightarrow$?	Medium	Medium
7	Intermediate	т↑	N mineralization $\uparrow \Rightarrow$ NPP $\uparrow \Rightarrow$ See mechanisms above	Strong	High
8	Intermediate	NÎ	Root allocation $\downarrow \Rightarrow$ Root litter $\downarrow \Rightarrow$ Soil C store \downarrow	Medium	Medium
9	Intermediate	NÎ	Mycorrhizal turnover $\uparrow \Rightarrow$ Litter input in soil $\uparrow \Rightarrow$ Soil C store \uparrow	Weak	Weak
10	Intermediate	NÎ	Litter N concentration $\uparrow \Rightarrow$ Litter decomposition rate $\uparrow ? \Rightarrow$ Soil C store \downarrow	Weak	Unclear
11	Intermediate	[CO₂]↑	Litter N concentration $\downarrow \Rightarrow$ Litter decomposition rate $\downarrow?\Rightarrow$ Soil C store \uparrow	Weak	Unclear
12	Intermediate	N↑, [CO ₂]↑	NPP $\uparrow \Rightarrow$ Litter production $\uparrow \Rightarrow$ SOM \uparrow	Weak	High
13	Intermediate	NÎ	NPP \uparrow and root allocation $\downarrow \Rightarrow$ N uptake $\downarrow \Rightarrow$ NPP \downarrow	Medium	Medium
14	Intermediate	[CO₂]↑	NPP \uparrow and root allocation $\uparrow \Rightarrow$ N uptake $\uparrow \Rightarrow$ NPP \uparrow	Medium	Medium
15	Intermediate	N1 -	Soil respiration $\downarrow \Rightarrow N$ mineralization $\downarrow ? \Rightarrow NPP \downarrow$	Medium	Weak
16	Intermediate	NÎ	Litter decomposition rate $\uparrow \downarrow \Rightarrow$ Soil C store $\downarrow \uparrow$	Medium	Weak
17	Slow	NÎ	SOM decomposition rate $\downarrow \Rightarrow$ Soil C store \uparrow	Medium	Weak

*Rate at which cause–effect chains respond: fast, within-year; intermediate, a few years; slow, decades; very slow, centuries. †Strength of the effects.

‡Knowledge of the links in the chain.

NPP, net primary production; SOM, soil organic matter.

Forest trees are long-living – Initial responses for seedlings may be very misleading for the net-effect! Nutrient-feedbacks are VERY important in the Boral forest!

Nordic research project(s) 1994–1997–2005 Prof. Sune Linder, SLU; Prof. Seppo Kellomäki, Joensuu, et al. Effects of CO₂, T and N on tree growth

Denmark: beech

Finland: Scots pine

Norway: Scots pine

Sweden: Norway spruce

Iceland: black cottonwood

Main findings of the Nordic project(s)

The main limiting factors for tree growth in Iceland were:

- 1. Nutrient availablity (N)
- 2. Growing season's length
- 3. Air temperature
- 4. Higher CO₂

Interactions between those factors are complex!

Increased growing season T in Iceland by 1.1 °C increased tree growth by 45%.

•T + miniralization effects

•The length of the growing season was not affected.

(Sigurdsson 2001. PhD thesis)

Changes in <u>air</u> temperature and [CO₂] are not enough!

New paper (July 201 Tree Physiology 00, 1-14 doi:10.1093/treephys/tpt043 **Research** paper Growth of mature boreal Norway spruce was not affected by elevated [CO₂] and/or air temperature unless nutrient availability was improved Bjarni D. Sigurdsson^{1,6}, Jane L. Medhurst², Göran Wallin³, Olafur Eggertsson⁴ and Sune Linder⁵

Tree Physiology Advance Access published July 21, 2013

Volume increment

Elevating <u>air</u> temperature ~4 ° C – without increasing soil temperature **did not increase** aboveground growth of Norway spruce at (natural) low N-availability

by +115% (Strömgren & Linder 2002)

Whole tree chambers on mature Sotch pine forest in E-Finland

Seppo Kellomäki et al. Phil. Trans. R. Soc. B 2008;363:2339-2349 Univ. of Eastern Finland / Joensuu ©2008 by The Royal Society

But even if forests grow better, they might change! Soil water may become an issue in more southern locations! Shift towards more Scots pine and birch?

Tree species composition in per cent of the total stocking in a slices divided between southern and northern Finland. (North includes the regions 11–13 above approximately 63°N, and s Finland the regions 1–10 below approximately 63°N.)

region and species	current	1991-2020	2021-2050	2070-2099			
southern Finland							
Scots pine (%)	42	44	54	62			
Norway spruce (%)	49	45	33	8			
birch (%)	9	11	13	30			
northern Finland							
Scots pine (%)	62	63	68	77			
Norway spruce (%)	27	26	22	14			
birch (%)	11	11	10	8			

Seppo Kellomäki et al. Phil. Trans. R. Soc. B 2008;363:2339-2349 Univ. of Eastern Finland / Joensuu

Regional studies II

- Total biomass growth increases between 20% and 25% over large areas of Fennoscandia.
- An increase of up to 35% in (wet) maritime conditions.
- Smaller under continental conditions because of more frequent drought episodes.
- Available forest biomass production in the Nordic and Baltic countries may increase to 760 million Mg during this century. Assuming that the management systems and the use of timber are the same as for today, an increase of 20% in biomass growth would mean that.
- In terms of annual stem volume growth, the increase is roughly 50 million m³/yr → One extra "Fennoscandian country"

Seppo Kellomäki 2007. Biofuels. In: Fenger J (ed.) *Impacts* of Climate Change on Renewable Energy Sources: Their role in the Nordic energy system. Nordic Council of Ministers, Copenhagen, pp. 140-153.

Mountain Pine Beetle outbreak on Contorta in BC: Natural Disaster or Natural Consequence?

Affected stands in BC since 2000:

- 18.3 million ha = 2013
 MPB outbrack
 - 1.8 x the size of Iceland!
 - 4.2 x the size of Denmark!!!
- 57% of standing Contorta pine volume in BC will be killed by 2020...
- Only 0.2 million ha salvaged per year

Source: Tim Ebata, BC MoFR, Allan Carroll, CFS

Take-home messages:

- In the Boreal forest it is nutrient feedbacks and soil
 processes which govern the response to CC
- Forest growth in Fennosandia expected to increase by 20-30% - or ca. 50 million m³

- Even if precip increases in Fennoscandia, water limitation may become more important (in S).
- Disturbances and biotic interactions may become more important! But very difficult to predict.

Acknowledgements

This lecture was given by the the SNS-funded:

CAR-ES 2011-2015 (Centre of Advanced Research on Environmental Services from Nordic Forest Ecosystems)

Especial acknowledgements:

- Seppo Kellomäki and Heli Peltola, Univ. of Eastern Finland.
- Sune Linder and Monika Strömgren SLU

