Sweden's renewable energy policies towards 2020 and 2030

Eva Centeno López Swedish Ministry of Environment and Energy

Tallinn, 12th Maj 2016

Ministry of the Environment and Energy Sweden

Government Offices of Sweden

The Swedish Energy System

Share of renewable energy (calculated as in RESD)

Sverige	2009	2010	2011	2012	2013	2014	2020
RES-total	47,3%	47,8%	48,8%	51,0%	52,0 %	52,6 %	54,8% (projection) Burden sharing according to RESD = 49%
RES- transport	Minst 7,4%	Minst 8,0%	9,4%	12,6%	17,0%	19,2%	

Renewables- Progress II

Wind power production was over 16 TWh 2015 compared to 1 TWh 2006

How did we get there?

General policy instruments

- Energy tax on electricity and fuels since decades
- Carbon dioxide taxation since 1991
- Green certificate system for RE since 2003
- Emissions trading of CO2 in EU

Targeted instruments

- Information and education, innovation and RD&D
- Various specific programmes and support schemes over the years

Swedish Energy and CO₂ taxation 1924 – 2015, *Basic Design (I)*

• Excise duties on energy – two components:

- Energy tax on fuels and electricity.
- CO₂ tax on fossil fuels.

• Energy tax:

 Introduced in: 1924 petrol ; 1951 electricity ; 1957 oils and coal ; 1964 LPG ; 1985 natural gas ; 2013 low blended bio in motor fuels.

• CO₂ tax:

- Based on fossil carbon content of fuels.
- Introduced in 1991, along with existing energy tax. Part of major general tax reform.
- CO₂ tax achieves cost effective emission reductions.

Swedish Energy and CO2 Taxation 1924 – 2015, Basic Design (II)

- **CO₂ tax:** Same level of for fossil motor and heating fuels, per ton fossil CO₂.
- Two levels of CO₂ tax for heating fuels, per ton CO₂
 - high for households and service (27 $€^1$ in 1991; 123 € in 2015)
 - *low* for sectors at risk of carbon leakage = industry, agriculture and heat production in combined heat and power plants.
 - In 1991: 7 €; in 2015 outside EU ETS 74 €, within EU ETS industry and CHP 0 €.
 - The alternative would have been an overall much lower tax level for all operators, resulting in significantly lower environmental results.
 - Border Tax Adjustments have never been an alternative considered in Sweden.
- Energy tax: Two tax levels for heating fuels and electricity
 - high for households and service.
 - low for industry (within and outside EU ETS) and agriculture.

¹ Exchange rate $1 \in = 9,0932$ SEK is used throughout this presentation (Official rate per 1 October 2014, 2014/C344/O3)

Development of the Swedish CO2 Tax

General Level and Industry Level

The electricity certificate system-Principles

 Yearly obligation on demand of certificates

- Technology neutral
- No financing from the state
- Enable international harmonisation

Deployed RES-E in the certificate system in Sweden

The decrease in 2013 is due to the phase out of old plants from the certificate system, mainly hydro and biomass plants

A common market with Norway

Sol Normalised electricity production Bio **2014** counting to the common target Vind NO: 1,7 TWh Vatten SE: 8,6 TWh SE1 28,4 30 26.4 75 SE2 NO3 NO1 +10.3NO5 SE3 +6.2 +3.7 2012 2013 2014 2016 2015 2017 2018 2019 2020 SE4 2.93 TWh/år (26.4 TWh till 2020) Vorge Sverige

Källa Energimyndigheten, NVE

(NWI) not

FONANCAG

Spot prices at major brokers

Källa: CisanWorld, ICAP och Svensk Kraftmäkling

The current electricity certificate price is about 136 swedish crowns per certificate (SEK/MWh) equivalent to about 14 EUR/MWh

Price for consumers

Between 2 and 5 EUR/MWh, 2003-2015

Swedish energy policy for challenges ahead

• Objectives for 2020

- at least 50 % RE of total energy use
- at least 10 % RE in transport
- 20 % more efficient energy use
- 40 % reduction in greenhouse gas emissions (non-ETS)

• Vision ...

- By 2020, fossil fuels for heating will be phased out
- By 2030, Sweden should have a vehicle stock that is independent of fossil fuels
- By 2050, a sustainable and resource-efficient energy system and no net emissions of green house gases
- Ambition to have a 100% renewable energy system in the longer term

Recent policy initiatives

- Increased ambition for the electricity certifcate system to 2020 (finance 30 TWh to 2020 compared to 2002)
- Tax reduction for micro-generation of electricity
- Reduced percentage of investment support for solar power but increased budget to this aim
- Support for storage for households with own electricity production
- A strategy on solar is being developed

The Energy Policy Commission

Follow the work at: www.energikommissionen.se

Øenergikommitte #energikom e-mail: m.energikommissionen@regeringskansliet.se

Terms of reference

Task:

Propose the basis for a broad agreement on long term energy policy, with particular emphasis on the electricity sector.

Time horizon : 2025/2030 and beyond.

Work divided into three phases :

Knowledge phase Analytical work Negotiations

Timeline: 1st of January 2017

Main challenges and issues

Challenges

- Changing energy landscape new roles, new actors
- Power system (plants and grid) is ageing
- Surplus of energy/low electricity prices, no willingness to invest
- Will there be sufficient electricity supply every single hour?
- Long lead times for any new investment
- How to secure R&D and innovation?

Issues

- Long-term goals and vision where should we be heading?
- How to reinforce an efficient use of energy and electricity?
- How do we replace nuclear? Timing?
- Is there a need to adapt electricity market design?
- Which policy measures are needed, e.g. taxes, support systems, regulation?

Some words on coming EU regulation

- Avoid more administration for just renewables
- ➢ Governance→ strong and predictable, at least 27% RES to 2030 has to be achieved!
- ➤ Support schemes → still up to each MS to decide on geographical scope
- \succ Cooperation \rightarrow voluntary basis, KOM facilitator
- ➢ Market design → improvements can be made but should apply for all technologies
- ➤ Heat&cooling→this sector needs more focus, externalities has to be included
- ➤ Transport → a strategy for decreasing emissions after 2020 including e-mobility, efficient transports and biofuels is needed.

Thank you for your attention!

eva.centeno-lopez@gov.se

