Impact of Carbon Taxes -Entrepreneur's View

Valdur Lahtvee Environmental Manager Eesti Energia AS

Outline

- Estonian electricity production
- Is the electricity import possible in near future?
- CO₂ taxes and EU emission trade impact to electricity sector
- Estonian electricity production scenarios (Max and CO₂-tax scenarios)
- Conclusions

Electricity production in Estonia

Electricity balance 1991-2002:

Basic assumptions for Eesti Energia's electricity production strategy

- EE should secure supply of national electricity demand on basis of domestic fuels
- EE should keep **stabilised electricity tariffs** through optimal use of domestic oil-shale
- EE should be in **compliance with coming EU** environmental acquis
- EE should be in **compliance with environmental commitments** taken by Estonia in International Conventions
- EE should **optimise energy transmission system** taking into account losses from current situation (production in Narva, consumption in Tallinn area)

• **Cooperation with Latvenergo** to use complementary character of production capacities

• Increase of share of renewables and Co-Generation in line with National Long-term Development Plan of Energy and Fuels Sector

• Minimization of risks and multi-firing fuels portfolio

Is Import of Electricity Possible? Where? When?

Import from neighbouring Countries?

Import from Nordic Countries?

Normal Year: ENERGY BALANCE 2006 [TWh] Generally normal conditions P - production capability C - consumption B - energy balance (P-C), export(+)/import(-)

Low precipitation year

ENERGY BALANCE 2006 [TWh]

B= Balance showing need for import or possible export Extremely low hydropower production

From 2006 Nordic Countries can cover its own demand only during "Normal" year. Finland has to import from neighbours anyway.

Elimination of excess capacities in Europe

REGIONAL ELECTRICITY MARKETS

IN THE ECT AREA

ENERGY CHARTER SECRETARIAT

CS (02) 676

T 58 RESTRICTED

Table 6 Projected years for elimination of excess capacity

Regional Blocks	Year
Baltic States	2007
Bulgaria & Romania	2014
Caucasus	2006
Central Asia	2008
CENTREL	2004
Eastern Europe	2007
NORDEL	2005
European Russia	2004
Southern Europe	2007
UCTE	2006
Eurasian ECT	2006

Brussels, 25th April 2002

Carbon-taxes and Emission-trade Impact to Estonian electricity sector?

European biggest CO₂ emitters

Source: Montel/powernews

CO₂ emissions of big energy companies bigger than some big countries emissions

CO₂-intensity of Estonian electricity

Specific CO₂ emissions from electricity production

• Estonian CO2 emissions are relatively high: on year 2002 emissions were 12,2 tCO2 per capita

• Estonia has fulfilled the Kyoto commitment: on 2001 reduction compared to 1990 was - 55%

Allikas: Finergy

Average CO₂-emission in powerplants of Narva are in range 1,2-1,4 kg/kWh. Both energy taxes level and CO₂-quota allocation have significant impact to production strategy of Eesti Energia.

Impact of Estonian CO₂-tax on electricity tariff

- Fee for CO₂ emission from Large Combustion Plants today is 7,5 EEK/tCO₂ (from 01.01.2005 11,3 EEK/tCO₂)
- CO₂ emission fee composed 80% from 2000 and 82% from 2001 total national emission fees revenue
- Share of CO₂ emission fee in electricity tariff is 0,9 %
- Share of overall environmental taxes (emission fees, resource fees etc.) in electricity tariff is 2,6%
- Today's (2002) CO₂-tax level in electricity tariff in Estonia is about 11,9 EEK/MWh
- Planned EU energy-tax minimum level from 01.01.2004 on electricity will be 9,5 EEK/MWh

CO₂-trade impact to electricity prices in Nordic Countries 2010

Table 5.2	Marginal p	prices in the	year 2010), €/MWh						
			Fr	ee allocati	ion		Auction	Free allocation		
		Baseline	€ 5	€ 10	€ 20	€ 5	€ 10	€ 20	Dry € 20	Wet € 5
Year average:		17.3	21.2	24.9	32.6	21.3	25.0	32.8	39.3	10.6
FWV1, 2	FWV1, 2879 h		22.0	25.5	33.5	22.2	25.6	33.7	37.8	11.8
FWSO, 3672 h		16.4	20.4	24.0	31.1	20.4	24.1	31.4	37.1	7.9
FWV2, 2209 h		17.5	21.4	25.6	33.9	21.5	25.7	34.0	44.9	13.6
Winter 1	day	19.0	22.5	26.1	34.8	22.8	26.1	34.8	39.6	12.4
	night	17.5	21.4	24.7	31.9	21.4	25.0	32.3	35.8	11.1
Summer	day	17.2	21.6	25.9	34.4	21.6	25.9	34.6	41.1	8.8
	night	15.5	19.0	21.8	27.3	19.1	22.0	27.8	32.5	6.9
Winter 2	day	17.7	21.7	26.1	35.0	21.7	26.1	35.0	49.1	15.2
	night	17.2	21.2	25.0	32.7	21.2	25.2	32.8	40.0	11.8

EU Emission Trade scheme will increase electricity price by 4-16 EUR/MWh (depending on prices of CO₂-quotas)

Source: Electrowatt-Econo

Conclusions : CO₂-taxes and Emission Trade will increase electricity tariffs

- Estonian specific CO_2 emissions on electricity production (t_{CO2}/MWh) are highest in the world;
- Implementation of recently adopted EU Energy Tax Directive does not have major impact on electricity tariffs, but higher tax than EU minimum tax level or possible double taxation, due to internalisation of external costs of electricity production either for environment protection or for increasing budget revenues, has significant impact;
- Emission Trade impact will depend on allocation of CO₂ Emission Quotas
- Major driving force to increase electricity tariffs comes from coming investments to achieve compliance with EU environmental requirements

Future Energy Scenarios for Estonia (with U-PLAN)

Comparison of two scenarios:

Max scenario:

Eesti Energia will cover domestic demand on basis of domestic generation capacities

<u>CO₂₋tax scenario:</u>

Similar to max scenario but with established constant CO₂ tax on level of 16 EUR/t with import to cover peak load

Basic assumptions

- Other environmental taxes increase 20% per annum (as proposed by MoE);
- Real price of oil-shale remain unchanged;
- Natural gas price 2003 on level 1330 EEK/1000 nm³ price increases 3% annually;
- Max possibility to re-power to CFB 7 Eesti PP blocks;
- Possibility to re-power only one block annually;
- Renovation of one block takes 3 year;
- From year 2012 there is national SO₂ emission sealing 25000 tons/y
- Old oil-shale capacities will be closed by 2016
- Interest rate 8%

Elecricity consumption forecast

Max scenario production capacities

CO₂-tax scenario production capacities

Distribution of renovated and new capacities

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Total
Max scenario																		2561 MW
- repowering oil-shale.		2x194							194	194	194	194	194	194			194	1746 MW
-new oil-shale							300											300 MW
- gasturbines					65								3x50	2x50			4x50	515 MW
CO ₂ -tax scenario																		2273 MW
- repowering oil-shale		2x194								194		194	194	194		194		1358 MW
- new oil-shale							300											300 MW
- gaas turbines					65						3x50	3x50	3x50	2x50				615 MW

New and renovated capacities:

Max scenario: 1658 MW oil-shale CFB ja 515 MW Gas Turbines

CO₂-tax scenario: 1270 MW oil-shale CFB ja 615 MW Gas Turbines (Peak load capacities not available, electricity imported)

Electricity production – Max stsenaarium

Electricity production – CO₂-tax scenario

Uus 300MW plokk EEJ-s Renoveeritavad plokid EEJ-s

• High CO₂-tax (16 EUR/t) will increase import of peak load electricity

Environmental impact of selected scenarios

SO₂ emissions

CO₂ emissions

NO_x emissions

Conclusions <u>Impact of CO₂-tax:</u>

• CO₂-tax starts to compete out oil-shale from level above 14 EUR/t. Used model (U-Plan) starts to replace oil-shale electricity first with import and secondly with electricity produced from Natural Gas (also imported). Used model does not allow to consider impact of emission trade.

Import of Peak Load electricity:

 Model showed that Gas Turbines installed for covering the peak load will work only at minimum loads (operational time only 1-5%) therefore it is more economically feasible to import the peak load electricity from Latvia. <u>Environmental impact</u>:

•Emissions are only slightly down with CO2 -tax scenario. With higher tax level differences become bigger on account of replaced fuel and if increasing electricity import.

•<u>Renewables use:</u>

• National target for increasing renewables share in electricity balance is 5,1% by 2010 (assumed 10% by 2020). Model showed that implementing these targets does not reduce investment needs into big fossil fuel power plants.